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THE PHYSIOPATHOLOGICAL ROLES
OF ANDROGENS IN MOTONEURONS

ANGELO POLETTI (*)

SUNTO. – Il recettore degli androgeni è stato purificato negli anni ʼ70 e clonato negli anni
ʼ80. Questa proteina fa parte della superfamiglia dei recettori steroidi e media i principali
effetti degli androgeni nei tessuti dipendenti o sensibili agli androgeni. Diverse funzioni
fisiologiche nel cervello sono controllate in modo differenziato nei due sessi e il recettore
degli androgeni gioca un ruolo specifico nei processi di differenziazione sessuale ed è
coinvolto nel mantenimento del comportamento sessuale maschile in età adulta. Se muta-
to, il recettore degli androgeni può avere un impatto su molte attività regolate dagli
androgeni a causa di una perdita della funzione androgenica nelle cellule bersaglio.
Tuttavia, nel caso di un particolare tipo di mutazione, l’allungamento del tratto di poli-
glutammine normalmente presente nella sua regione N-terminale, il recettore degli andro-
geni diventa neurotossico e può indurre la morte cellulare di motoneuroni localizzati nel
midollo spinale, che esprimono livelli molto elevati di questa proteina. In questo lavoro,
discuteremo brevemente le azioni più importanti delle attività androgenica mediata dal
recettore degli androgeni nel cervello e i meccanismi attraverso i quali la forma mutata del
recettore degli androgeni può portare alla neurodegenerazione nell’atrofia muscolare spi-
nale e bulbare (SBMA).

***
ABSTRACT. – The androgen receptor has been purified in the ‘70s and cloned in the ‘80s.
It is a member of the steroid receptor superfamily and mediated the most important
effects of androgen in androgen dependent or sensitive tissues. Several physiological
function of the brain are differentially controlled in the two sexes and androgens play
specific role in the processes of sexual differentiation and it is involved in the mainte-
nance of male sex behaviour in adulthood. When mutated, the androgen receptor may
impact on many of these androgen-regulated activities because of a loss of androgenic
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function in target cells. However, in the case of a peculiar type of mutation, the elonga-
tion of the polyglutamine tract normally present in its N-terminus, the androgen recep-
tor becomes neurotoxic and induces cells death of a number of motoneurons in the
spinal cord, which express very high level of this protein. Here, we will briefly discuss
the most important actions of androgen receptor-mediated androgen activity in the
brain and the mechanisms by which the mutant androgen receptor may lead to neu-
rodegeneration in Spinal and Bulbar Muscular Atrophy (SBMA).

The androgen receptor (AR) is the factor mainly in charge in
mediating the masculinizing effects of androgens in target tissue.
Specific functions related to sex differences are exerted by androgens
in the brain. In this area, the AR is present at high levels in the hypo-
thalamus, particularly in neurons which are localized in the latero-
mamillary nucleus, in the medial mamillary nucleus, in the diagonal
band (horizontal limb) of Broca, in the sexually dimorphic nucleus
present in the preoptic area as well as in the paraventricular, suprachi-
asmatic, ventromedial and infundibular nuclei [1, 2]. AR has also been
detected in other hypothalamic nuclei (e.g. nucleus basalis of Meynert,
supraoptic and the periventricular nuclei, bed nucleus of the stria ter-
minalis, medial preoptic area, etc.) [1, 2, 3]. By analysing possible dif-
ferences in AR distribution in male and female brains, it emerged that
many of these regions and nuclei are sexually dimorphic [4] with dif-
ferential expression AR levels in the two sexes. These observation have
been used to explain the existence of physiological changes of the
organization of the hypothalamic-pituitary-gonadal axis in the two
sexes, as well as it has contributed to explain male and female sexual
behavior, or the prevalence of some psychiatric and neurological dis-
eases in one of the two sexes [5]. Other brain regions characterized by
an intense localization of AR protein are the hippocampus and the tem-
poral cortex [6]; as opposite to the hypothalamus, these structures do
not show variation of AR expression in the two sexes [7]. Finally, it has
been demonstrated the presence of considerably high level of AR in the
motoneurons located in the bulbar region and of the anterior horn in
the spinal cord, as well as in sensory neurons present in the dorsal root
ganglia, and in the sural nerve [8].

The androgen receptor (AR) gene has been cloned in 1988 [9, 10,
11] and only three years later a mutated version of the AR has been
associated to spinal and bulbar muscular atrophy (SBMA) or Kennedy’s
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disease [12] a neurodegenerative disease affecting motoneurons. The
AR gene encodes a protein which acts as a ligand activated transcrip-
tion factor responsible for most of the biological actions exerted by the
androgenic steroids in target tissues. The AR belongs to the nuclear
receptor superfamily and similarly to other member of this family con-
trol the transcription of specific target genes [13]. Structurally, the AR
contains several well characterized domains, which are capable to
mediate the interaction between the protein and its ligand (LBD), the
protein and the DNA (DBD), and be the bases for protein-protein
interactions. This protein-protein interaction is responsible for AR
dimerization and AR association with co-factors and co-regulators, as
well as for the interaction with molecular chaperones both responsible
for the modulation of its biological activity [14, 15]. When AR is not
bound to its ligand, the protein remains confined in the cytoplasm
where it forms a multi-heteromeric inactive complex with Heat Shock
Proteins (Hsp) [16, 17]. Upon binding to testosterone, or other andro-
gens, the AR dissociates from the HSPs dimerizes and translocates into
the nucleus. Here, the AR binds the promoter region of androgen
responsive genes, typically containing androgen responsive elements
(ARE), activating transcription of target genes.

In the past 30 years, several groups have described that many AR
gene mutations associate to a variety of human diseases. Most of these
mutations are linked to clinical conditions in which a clear loss-of-the
AR-function is present. Indeed, the mutation in the gene are translated
in a receptor protein with an impaired capability to activate transcrip-
tion of the androgen target genes. This loss-of-AR-function could be
partial or complete, causing a limited or complete androgen insensitiv-
ity in males, associated to a wide range of mixed sexual phenotypes
[18]. Besides these, other AR mutations are capable to potentiate the
normal AR functions, or generate a constitutively activated protein
which can cause prostate cancer or other androgen-dependent diseases. 

A very interesting situation occurs when the target of the mutation
is the CAG (cytosine, adenine, guanine) triplet repeat stretch located in
the first coding exon of the AR gene. This mutation consists in an expan-
sion of the length of the CAG repeat, which becomes longer than 36 con-
tiguous CAG codons. In this case, the resulting encoded AR protein con-
tains an aberrantly long polyglutamine (polyQ) tract in its N-terminal
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domain, which surprisingly confers neurotoxic properties to the mutant
AR (ARpolyQ). These neurotoxic properties of the ARpolyQ are partic-
ularly manifested on motoneurons located in the anterior horns of the
spinal cords, in the bulbar region of the brainstem and on sensory neu-
rons located in the dorsal root ganglia. The death of motoneurons has the
consequence to induce muscle atrophy. Individual carrying this mutant
AR gene are affected by the peculiar form of motoneuron disease
(MNDs), previously mentioned, the SBMA [12, 19] in which both motor
and sensory functions are altered. Of note, the same type of CAG expan-
sion encoding for the elongated polyQ tract has been reported in other
genes and the coded proteins cause different types of neurodegenerative
diseases [12, 20, 21, 22], which are: the Huntington’s disease (HD), dif-
ferent types of spinal-cerebellar ataxias (SCAs), and the dentatorubral
and pallidoluysian atrophy (DRPLA) [21, 23]. Singularly, these are very
rare diseases, but all together constitute the most frequent class of inher-
ited neurodegenerative diseases in human. It is likely that common mech-
anisms of neurotoxicity are exerted when the polyQ tract is present in a
given protein [23, 24, 25].

The mutant ARpolyQ which causes SBMA is characterized by a
partial loos-of-function (LOF), since its transcriptional competence is
reduced when compared to wtAR [26, 27, 28, 29]. This probably
accounts for the endocrine alteration typically reported in most SBMA
patients, like gynecomastia and hypogonadism hypogonadic [19, 30].
Notably, we found that in immortalized moto neurons ARpolyQ has a
lower transcriptional competence than wtAR when the target on pro-
moter is a classical androgen responsive element (ARE) on which AR
activates transcription mediating a positive androgenic control.
Conversely, ARpolyQ and wtAR present very similar inhibitory activi-
ties if an alternative promoter region is involved, such as the AR pro-
moter/5’-UTR activation which undergoes to a feedback mechanism
exerted by the AR itself on its own promoter [26]. Indeed, we identi-
fied two opposite mechanism of the androgenic control of AR expres-
sion in moto neurons: a negative feedback on the AR promoter and a
positive feed-forward activity on a region located in the AR ORF [26].
These two different androgenic modulations of AR gene could involve
different regulatory elements and factors.

The fact that ARpolyQ loose part of its activity on classical ARE-
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promoters suggests that some androgenic response may be lost in
motoneurons of SBMA patients. Therefore, this may have impact on
the physiological regulation exerted by androgens in these cells in
which, for example, androgens control the development and adult
maintenance of moto neurons of the spinal nucleus of the bulbocaver-
nosus (SNB) system at different stages [31]. Most of these androgenic
activities seem to take place during development, especially around
birth, or in the process of sexual differentiation when androgens exert
different priming activities in the brain. Indeed, androgens modulate
synapses formation at neuromuscular junctions and may regulate the
growth and arborization of dendritic branches. Androgens act also in
adulthood by preserving the moto neurons size [32] and the lack of
androgens correlates with a reduction of moto neuron size and of the
extension of dendrite [2, 33, 34]. These effects may be due to testos-
terone itself or to its more potent 5 alpha-reduced derivative dihy-
drotestosterone (DHT) that can be formed directly “in loco”. In fact,
spinal cord motoneurons have been found to express very high levels of
the enzyme 5 alpha-Reductase type 2 responsible for this conversion
and the production of DHT in most androgen dependent tissues [35].
Some of these effects can be mediated at a molecular levels by the pro-
tein neuritin (or CPG15), that is known to activate neurite outgrowth
and we found to be controlled by the androgenic activation of AR in
moto neurons [36, 37, 38, 39, 40, 41, 42].

Despite all these observation, so far no data seems to indicate that
the LOF of the ARpolyQ may have impact on the androgenic activities
in motoneuronal cells in these brain districts.

Most of the data obtained so far in SBMA strongly suggest that
motoneuron death in this disease is due to neurotoxic properties which
the elongated polyQ confers to the AR. This gain-of-unction (GOF) is
mediated by several different mechanisms, but seems to be triggered by
testosterone which is capable to induce aberrant conformations to the
mutant ARpolyQ [3]. Indeed, being SBMA a disease associated to a
GOF, it is surprising that only male are affected in SBMA, and female
that carry the mutant gene are protected from disease manifestation. It
has been initially postulated that this may involves the process of ran-
dom X-chromosome inactivation; this could preserve about half of
motoneurons from GOF of ARpolyQ. Surprisingly, while women het-
erozygous for expanded CAG repeat in exon 1 of AR gene do not
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develop SBMA [43, 44], also two women homozygous for SBMA were
identified and none of them showed clinical manifestation of SBMA
[45]. Moreover, all mice models developed so far, present disease symp-
tomatology only in male, even when the transgene carrying the polyQ
is located randomly into the genone (and not in the X-chromosome). In
these mice, castration in male ameliorates the phenotype, while the
treatment with testosterone in females induces SBMA symptoms [46,
47, 48, 49, 50, 51, 52, 53, 54]. Similar data were obtained in fly models
of SBMA [55, 56]. Thus, the male risk to develop SBMA is due to cir-
culating testosterone. 

At the molecular levels, we found that ARpolyQ binding to testos-
terone induces its aggregation [57, 58, 59]. Our data suggest that the
aggregates initially sequester misfolded ARpolyQ protecting from its
neurotoxicity [3], but at later stages they may become toxic by impairing
important intracellular pathways (e.g.: axonal transport or mitochondria
distribution [57]. In addition, ARpolyQ seems to be particularly cytotox-
ic at nuclear levels and cytoplasmic retention ameliorate survival of
SBMA motoneurons in culture and of SBMA mouse models [60]. The
neurotoxicity triggered by testosterone on ARpolyQ is likely due to the
fact that this process involves the release of AR from accessory chaper-
ones and the activation process of the AR. This requires conformational
rearrangements to reach the active status of the transcription factor and
the expanded polyQ might alter the correct protein folding. Of note, this
process is counteracted by selected anti-androgens, like Cyproterone
acetate, Flutamide or Bicalutamide [61, 62, 63, 64]. In particular,
Bicalutamide has the property to act as a type I antagonist against AR and
to slow down its nuclear translocation allowing ARpolyQ cytoplasmic
retention and improved autophagic degradation [61, 62, 65, 66]. We
combined the use of bicalutamide with that of an effective autophagic
activator, the trehalose, and found a potent synergic effect of the two
compounds because of the enhanced cytopasmic degradation of
ARpolyQ in these conditions [65].

Once activated by testosterone, the mutant ARpolyQ can thus
generate misfolded species that must be removed from cell in order to
prevent aggregate accumulation and possible damages of the degrada-
tive pathways. This process is generally regulated by specific chaper-
ones, including the heat shock proteins (HSPs), which are overex-
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pressed upon different cell stresses, including proteotoxic stresses [67].
Chaperones are a large family with more than 150 members (sub-
grouped in: small HSPs, HSP40s, HSP60s, HSP70s, HSP90s and
HSP100) [68]) and work often in conjunction with co-chaperones (e.g.:
nucleotide exchange factors (NEFs), such as BCL2-associated athano-
gene (BAG) family of proteins [69]). 

It has been reported that several of these chaperones/co-chaper-
ones are linked, when mutated, to neurodegenerative diseases of other
disorders in which neurons are affected [70]. The function of chaper-
ones is to promote protein folding, counteracting misfolding and aggre-
gation. If this process fails, they are able to direct misfolded proteins to
the degradative systems. Among these, the most important are: the
ubiquitin-proteasome system (UPS) and the autophagic pathway, which
are finely tuned by specific chaperones and co-chaperones [71, 72, 73,
74, 75]. We found that some smallHSP (also named HSPBs), like
HSPB8, are able to fully counteract ARpolyQ aggregation under sever-
al different circumstances [76]. This occurs by facilitating a peculiar
form of autophagy, named chaperone-assisted selective autophagy
(CASA), which is based on the activity of the CASA complex. Indeed,
this complex includes two molecules of HSPB8 interacting with BAG3,
HSP70 and CHIP/STUB1. Once the CASA complex has recognized
mutant ARpolyQ, it interacts with SQSTM1/p62, an autophagy recep-
tor which recognizes both the ubiquitinated proteins and the lipidated
form of LC3 (LC3-II) associated to the autophagosome membranes to
target the misfolded proteins of the CASA complex to degradation
[77]. Alternatively, the complex HSP70-CHIP/STUB1 and
SQSTM1/p62 can works in conjunction with BAG1 to target ARpolyQ
to UPS [75]. When this equilibrium is imbalanced, ARpolyQ accumu-
lated into intracellular aggregates into motoneurons.

HSPB8 is widely distributed in most human tissues, and it is
upregulated in SBMA [61, 78, 79, 80]. When mutated it causes
Charcot-Marie-Tooth type 2L disease, hereditary distal motor neuropa-
thy type II (dHMN-II) or distal myopathy [81, 82, 83]. HSPB8 is highly
expressed in anterior horn motoneurons [80] and in skeletal muscle,
two tissues potentially affected in SBMA [66]. In addition HSPB8
becomes overexpressed during disease progression, thus contributing
to the removal of misfolded ARpolyQ. When expressed in cells,
HSPB8 facilitates ARpolyQ clearance via autophagy removing the
autophagy flux blockage which characterize this disease [61, 65, 75,
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84]. HSPB8 also removes other misfolded proteins responsible for neu-
ronal death in other neurodegenerative diseases [61, 75, 80, 85, 86, 87,
88, 89, 90, 91], suggesting that this factor can be a potential target to
counteract proteotoxicity in a wide variety of disorders affecting the
brain.

In conclusion, androgens have several role in the brain and most
of the effects on neuronal cells are mediated by the AR. Reduced func-
tion of AR may impact on the sex and aggressive behavior in male and
may be linked to depression, while aberrant functions associated to the
presence of the elongated polyQ tract may cause death of motoneurons
and their target muscle cells. There are several strategies potentially
useful to be use to counteract the toxicity of the mutant ARpolyQ,
including the approaches aimed to prevent its activation, but that
unfortunately cause heavy side effects at endocrine levels. We have
identified a factor, HSPB8 which when activated protect against
mutant ARpolyQ toxicity and may be an important target for future
therapeutic approaches in SBMA.
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