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Sunto. – La descrizionematematica dei sistemi quantistici ne identi�ca univocamente
la natura. In altre parole, trattiamo un sistema come quantistico se, per descriverne il
comportamento, adottiamo il formalismo degli spazi di Hilbert e delle relative strutture
individuate dai postulati della teoria quantistica. La scelta di utilizzare sistemi quantisti-
ci quali sistemi elementari della �sica può essere giusti�cata in termini di principi infor-
matici, grazie a risultati di ricerche svolte nell’ultimo decennio. Tali risultati concludono
un programma di ricerca durato quasi un secolo, volto a trovare una formulazione della
teoria quantistica in termini di principi operazionali. Questo risultatoponeoraunanuova
s�da, che viene qui descritta ed a�rontata. Se i sistemi quantistici sono in prima battuta
pensati come portatori elementari di informazione, piuttosto che come costituenti ele-
mentari della materia, e le loro connessioni sono connessioni logiche all’interno di un al-
goritmo, piuttosto che relazioni spazio-temporali, occorre trovare una opportuna giusti-
�cazione per i concetti meccanici— che caratterizzano la teoria quantistica come teoria
dei sistemi �sici. A tal �ne, illustreremo come si possa pensare una legge �sica quale al-
goritmo di aggiornamento del contenuto dei registri di memoria che compongono un
sistema. Imponendo quindi le proprietà caratteristiche delle leggi �siche a tale algoritmo,
ovvero omogeneità, reversibilità ed isotropia, mostreremo che le leggi �siche cosı̀ selezio-
nate sono particolari algoritmi noti sotto il nome di automi cellulari. Ulteriori assunzioni
di massima semplicità dell’algoritmo portano a due soli automi cellulari, che in un oppor-
tuno regime possono essere descritti dalle equazioni di�erenziali di Weyl, alla base della
dinamica di campi quantistici relativistici. Discuteremo in�ne come lo stesso automa cel-
lulare possa dar luogo tanto alla dinamica di particelle Fermioniche, quanto alle leggi di
Maxwell, che regolano la dinamica del campo elettromagnetico. Concluderemo con la
discussione del principio di relatività, che, opportunamente riformulato, consiste nella
de�nizione del concetto di cambio di sistema di riferimento inerziale, e permette quindi di
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ritrovare la simmetria dello spazio-tempoMinkowskiano, de�nita dal gruppo di Poincaré.
Lo spazio-tempo emerge quindi in tale contesto, non come sfondo per le leggi �siche,
ma come loro manifestazione, con caratteristiche dettate dalla dinamica dei sistemi, ine-
vitabilmente rivestito delle equazioni che descrivono tale dinamica. In breve, non esiste
spazio-tempo senza un’equazione di evoluzione che lo richieda.

∗ ∗ ∗

Abstract. – The mathematical description of quantum systems univocally identi�es
their nature. In other words we treat a system as quantum if we describe its behaviour
adopting Hilbert spaces and structures thereof, as prescribed by the postulates of quan-
tum theory. The choice of using quantum systems as the elementary systems of physics
can be justi�ed in terms of informational principles, thanks to results of the last decade.
Such results come as the conclusion of a research program that lasted almost one century,
with the aim of reformulating quantum theory in terms of operational principles. This
achievement now poses a new challenge, that we face here. If the systems of quantum
theory are thought of as elementary information carriers in the �rst place, rather than el-
ementary constituents of matter, and their connections are logical connections within a
given algorithm, rather than space-time relations, then we need to �nd the origin of me-
chanical concepts—that characterise quantummechanics as a theory of physical systems.
To this end, wewill illustrate howphysical laws can be viewed as algorithms for the update
of memory registers that make a physical system. Imposing the characteristic properties
of physical laws to such an algorithm, i.e. homogeneity, reversibility and isotropy, we will
show that the physical laws thus selected are particular algorithms known as cellular au-
tomata. Further assumptions regarding maximal simplicity of the algorithm lead to two
cellular automata only, that in a suitable regime can be described by Weyl’s di�erential
equations, lying at the basis of the dynamics of relativistic quantum �elds. We will �nally
discuss how the same cellular automaton can give rise to both Fermionic �eld dynam-
ics and to Maxwell’s equations, that rule the dynamics of the electromagnetic �eld. We
will conclude reviewing the discussion of the relativity principle, that must be suitably
adapted to the scenario where space-time is not an elementary notion, through the de�ni-
tion of a change of inertial reference frame, and whose formulation leads to the recovery
of the symmetry of Minkowski space-time, identi�ed with Poincaré’s group. Space-time
thus emerges as one of the manifestations of physical laws, rather than the background
where they occur, and its features are determined by the dynamics of systems, necessarily
equipped with di�erential equations that express it. In brief, there is no space-time unless
an evolution rule requires it.

The advent of QuantumMechanics in the early twentieth century
probably represents the most profound revolution in the history of nat-
ural sciences, surely comparable to the Copernican revolution or to the
introduction of the Galilean method, and in most respects even more
shaking than the development of general relativity. The consequences
of the quantum world-view are still far from being grasped in their full
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extent, even by the community of physicists themselves. This is true if
one accepts the Copenhagen interpretation of quantum physics, as well
as if one denies it and yearns for a consistent way of reconciling quantum
theory with a classical imaginative world.

While there are attempts at formulations of quantum mechanics
that can save a notion of predetermined elements of reality independent
of observations, we will focus here on the research program that comes
from acceptance of a world-view where physical events occur in an inher-
ently probabilistic way, depending on the choices of observers that mea-
sure them, and the best physical theorywe canwish formust provide rules
for calculating correlations between possible events. In this scenario, con-
cepts like mass, charge, or temperature of a system, are high-level struc-
tures as compared to registrations of detector clicks or pointer positions,
or naked-eye observations. A further thought on the situation then leads
to the conclusion that our bottom-level theory is rather a theory of in-
formation than a mechanical theory: information about operations per-
formedon systems and about observed events. Mechanics is the high-level
picture that wewish to recover at the end of our route towards a reformu-
lation of fundamental physics.

It is then clear whymost concepts, techniques and tools that we use
in this endeavour are borrowed from that special experience in the history
of quantumscience that is quantum information theory. Since its very be-
ginning, besides introducing new information-processing concepts and
technologies, quantum information theory has represented a new way
of looking at foundations of Quantum Theory (QT). The reconsidera-
tion of the structure of quantum theory and the exploration of areas that
were neglected before, lead to a new axiomatization program, initiated in
the early 2000 [1, 2, 3, 4] and lasted for more than one decade [5, 6, 7].
The goal of the endeavourwas to reconstruct vonNeumann’smathemat-
ical formulation of the theory in terms of Hilbert-spaces—neglecting the
mechanical postulates such as Schrödinger’s equation or its relativistic
counterparts—starting from information-processing principles. A
complete derivation of QT for �nite dimensional systems has been �-
nally achieved in Ref. [8] within the framework of Operational Proba-
bilisticTheories (OPT), starting from six principles assessing the possibil-
ity or impossibility to carry out speci�c information-processing tasks. A
book has later been published [9] that presents the framework ofOPTs—
theories that share the same structures for composition of systems and
processes as QT and classical theory, and include suitable rules for calcu-
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lating probabilities of composite processes—along with the derivation of
QT.

Coming back to our metaphor, however, at this stage we are not
even half-way through the journey from the low-level theory of physical
systems to the high-level language of mechanics. The informational ap-
proach is then carried one step further, with the purpose of reconstruct-
ing quantum equations ofmotion, and space-time as theirmanifestation.
In the simplest, non interacting case, we will recover Weyl, Dirac and
Maxwell free �eld theories, along with the fundamental constants they
involve, such as ~ and c.

The key idea from this stage on is to think of physical laws as in-
formation processing algorithms, which process the state of an array of
quantum memory cells. If one follows the original proposal by Feyn-
man [10], where physical laws are supposed to be amenable to an exact
simulation by an algorithm that requires a bounded amount of resources
per unit volume of space-time, then the distinction between simulation
algorithm and actual physical law vanishes1. In this case, the information
capacity of a �nite physical system has to be bounded. From this per-
spective, then, any model of physical law will correspond to an algorithm
where continuous quantum �elds will be replaced by countably many
�nite-dimensional Fermionic2 quantum systems. Such an algorithm, re-
versible and abidingby someweak formofhomogeneity and locality, then
corresponds to aFermionicCellularAutomaton. Cellular automata, orig-
inally introduced in classical computation by von Neumann [11], were
studied in the quantum domain since the late eighties of last century [12,
13, 14]. Itwas only in2004 that the conceptwas rigorously formalised [15],
and in the following we will use the termQuantumCellular Automaton
(QCA) to refer to this notion. Now the subject has been studied by vari-
ous authors in further detail [16, 17, 18, 19, 20]. Very recently, the author

1Di�erently from the proposal of Feynman, we consider here physical laws exclusively
as scienti�c tools to analyse physical phenomena, and distinguish them, in principle, from
the actual rules governing the occurrence of phenomena. It is clear, however, that the goal
of the formulation of physical laws is to predict the behaviour of physical systems.

2Themotivation for the choice of Fermionic systems rather thanqubitswould require
a very long discussion per se. Here we will only remark that while qubit algorithms are
easily simulated by Fermionic algorithms, respecting their topological structure, for the
converse simulation one needs to distort the topology of connections between elemen-
tary processes. Moreover, the requirement of linearity that we will discuss shortly is not
satis�ed by non-trivial qubit algorithms. For obvious reasons, Bosonic systems would vi-
olate the requirement of a bounded information density.
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formalised cellular automata in the wider context of OPTs [21].
It is due to mention that studies similar in their technical develop-

ment have been carried out before. The simulation of relativistic quan-
tumdynamics viaQCAs, in particular, was already discussed inRefs. [22,
23, 24]. However, we remark that the program thatwe are discussing here
adopts a paradigm that is reversedwith respect to thosementioned above,
and aims at a derivation of quantum�eld theory (QFT) from an informa-
tional standpoint [25, 26]. Other authors, following these results, also
addressed the foundations of QFT in the QCA framework [19, 20].

The present status of this research program is very successful,
having derived from a few, very simple requirements, the equations of
Weyl and Dirac in 1+1 [27, 28] and in 3+1 dimensions [25], along with
Maxwell’s equations [29] for suitable bilinear functions of theWeyl �elds,
also abiding by bosonic commutation relations to very good approxima-
tion. Weyl’s, Dirac’s and Maxwell’s equations are the dynamical equa-
tions of the fundamental relativistic quantum �elds. The above results
then imply that the free, non-interacting �elds describing the most ele-
mentary physical systems have been recovered.

In the same project we can list a stream of works that analyse the
symmetries of the physical laws represented by the above mentioned
QCAs [30], starting from a rigorous application of the relativity prin-
ciple [31, 32, 33, 34]. The results of these analyses show that the relativis-
tic Minkowski space-time can be recovered, as the natural manifold for
the representation of physical laws represented by the above mentioned
QCAs. Indeed, while the discrete nature of QCAs manifestly breaks co-
variance under the usual representations of Lorentz’s group, upon iden-
tifying the notion of “reference frame” with that of “representation” of
the dynamics, one can appeal to the relativity principle to de�ne the “iner-
tial representation” as the one for which the physical law retains the same
mathematical form. In such a way the change of inertial reference frame
leads to a set of modi�ed Lorentz transformations that recover the usual
ones when the observation scale is much larger than the discrete micro-
scopic scale.

The future challenge consists in accounting also for the fundamen-
tal interactions between elementary �elds. The program presents with
technical di�culties, and preliminary studies have been carried out,
analysing 1+1-dimensional toy-theories [35, 36], and introducing pertur-
bative techniques that genralise their counterpart for continuous-time,
Hamiltonian dynamics [37].
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1. Cellular automata

The approach illustrated in the introduction is based on the assumption
that physical systems and events are themanifestationof informationpro-
cessing occurring on an array of elementarymemory cells. This paradigm
is that of a general algorithm running on a computer, whose memory
registers are systems of some yet unspeci�ed kind. They might be clas-
sical bits—bits for short —or larger classical systems, or quantum bits—
qubits—or Fermionic modes, or even systems of some more exotic kind.
The choice of the type of system that we use for our model of physical
law can be motivated in various ways, but will be justi�ed, in the end of
the day, only posteriori, based on its predictions. It is reasonable to sup-
pose, however, that our theoretical model should not be unnecessarily
complex, according to a loose actualisation of Occam’s razor. Following
Feynman [10] and Deutsch [38] we then suppose that the physical laws
should be exactly replicated by a computer operating on �nite means as
long as a �nite portion of space-time is to be described. Reasoning in this
way, one can imagine that every elementary system should carry only a
�nite amount of information. While the last assumption is not strictly
necessary, its violation seems to be at odds with the existence of funda-
mental physical constants such as c, ~ andG, that determine spatial scales
separating regimes where physical systems behave in a very di�erent way.
The choice that wemake is then for a kind of systemwith a �nite number
of levels.

Our choice for the elementary cells will be be quantum, because
present day physics suggests that the behaviour of elementary physical sys-
tems is consistent with such a picture. However, we have to choose be-
tween the two simplest, �nite-dimensional quantum systems: qubits or
Fermionic modes. For the moment it is not strictly necessary to exclude
one of the two, and we will come back on this question later.

The big question now is: what is the best candidate algorithm for
representing physical laws? More precisely, what features must it cast?
What are the constraints that we impose on our algorithm? While, also
in this case, our assumptions are not strictly necessary, we analyse the fea-
tures of a physical law, anduse themasdesiderata for our algorithm. In the
�rst place, physical laws are homogeneous in space-time. The equations
that express them hold independently of the space-time point that we are
considering. How can we translate this requirement for our algorithm,
as we do not allow space-time to enter our basic language? Homogeneity
in our computational scenario is the requirement that, roughly speaking,
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every memory system is treated in the same way by the algorithm, and
the rule for updating the content of a cell in a computational step is then
independent of both i) the cell address, and ii) the step counter of the
algorithm. We formulate the homogeneity principle as follows

Homogeneous update rule: every two memory cells cannot be dis-
tinguished by the way in which the rule updates their state, unless one
establishes a reference cell, which can be any.

In order to make the content of the principle clearer, let us think
of a memory cell as a point in space (or space-time). The physical laws
are such that one cannot set an absolute reference frame, where a special
point p is chosen as the origin, based on a special behaviour of physical
laws at p. The �rst part of the principle then extends this property to an
abstract memory array evolved by an update rule. On the other hand,
if any reference frame is �xed in space (or space-time), then it is possible
to label points in space (or space-time) with respect to such a reference
frame. Einstein’s construction of an inertial frame via clock synchronisa-
tion is a constructive example of the desideratum that physical laws allow
an observer to distinguish the physical role of points in space-time with
respect to a reference point. The possibility of a similar construction is
bound to the possibility of operationally discriminate two points, so that
their “geometric label” in space-time, or their logical address in amemory
array is not merely theoretical. In other words, it is meaningful to name
two di�erent cells by di�erent labels, once we arbitrarily set a reference
frame. This requirement is captured and generalised by the second part
of the principle.

The second property of physical laws thatwe require for our update
rule is reversibility. Despite its intuitive content, there might be di�erent
meanings for the reversibility requirement. The�rstmeaning comes from
the framework ofOPTswhere an agent is supposed to be able to perform
on a system every transformation that is mathematically conceivable and
not inconsistent. Then, a transformation is reversible if there exists an-
other one that inverts its e�ects, and whose e�ect is inverted by it. This
concept of reversibility, that we name operational invertibility, is clearly
not applicable to a physical law, since there is no possibility of changing
a physical law to its inverse in practice. On the opposite side, one has a
notion of reversibility related to the possibility to use knowledge of the
state of a cell or a group of cells tomathematically reconstruct the state of
another groupof cells at an earlier evolution step. We call this property in-
vertibility. Invertibility might seem a reasonable requirement for a physi-
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cal law, but we need to remind that in the theories we are considering it is
in principle impossible to acquire the knowledge of the state of any group
of cells [39]. The last notion that we discuss, that we call reversibility, lies
in between the above two, and is the notion that is commonly adopted in
quantummechanics textbooks. According to this notion, an evolution is
reversible if it is equivalent to its inverse modulo operationally reversible
transformations acting on local memory cells.

Suppose now that we have an invertible evolution rule U , whose
mathematical inverse U −1 is another possible evolution rule. Suppose
that the two rules are not reversible in the sense de�ned above. It is very
easy to construct a reversible rule by taking two copies of the memory
array, thus building a “two-layer” memory with addresses (a, i), where
a ∈ N is the address of a cell in the single layer, while i ∈ {0, 1} addresses
the layer. The cell a in the new memory array is the composite systems
made of the cells (a, 0) and (a, 1). Let then the evolution rule on this
new array be U ⊗ U −1. This rule is reversible, since it is equivalent to
U −1 ⊗ U modulo swapping the systems (a, 0) and (a, 1) for every a.
The latter operation is a local, operationally reversible transformation on
the cell a. The formulation of reversibility is very simple.

Reversible update rule: the update rule is reversible, i.e. it is equiva-
lent to its inverse via one and the same operationally reversible transfor-
mation acting independently on every cell.

Let us then consider, in what follows, a denumerable memory ar-
ray, with a reversible update rule that is homogeneous. We make a �nal
requirement on our update rule, that is locality. If we started considering
systems in a geometrically de�ned space-time, we could de�ne locality as
the property of an update rule to change the state of a system in a way
that only depends on “close” systems, where closeness is de�ned by the
underlying geometry. However, in our approach we are not introducing
physical concepts at the fundamental level, andwe are trying to show that
the latter can be recovered as emergent features, including the geometry
of space-time. Thus, we have to turn the usual approach to locality on its
head, and de�ne twomemory cells a and b to be neighbours if the update
rule is such that either a change in a at step t a�ects b at t + 1, or vicev-
ersa. Thus, the distance of two cells a, b is de�ned by the number d of
steps that are required for a change in a (or b) at step t to a�ect b (or a) at
t+ d.

The geometry of our memory array can be made more explicit by
constructing a graph (V,E), as follows. The vertex set is V ≡ A, the
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set of all possible addresses in our array, while the (ordered) edge set E
contains all pairs (a, b) ∈ A × A such that a change in a at step t can
a�ect b at t+ 1. For a homogenous update rule, the graph (V,E) is very
regular: being all the cells identical, their neighbourhoods must have the
same structure: one can then choose a reference cell e, and identify its
neighbour cells by the symbols {hi}i∈S+ . The same set then identi�es the
neighbours of every other cell a. One can prove, moreover, that the graph
of a homogeneous rule is the Cayley graph of a group [26, 21]. A Cay-
ley graph of a groupG, presented by a set of generators S+ = {hi}i∈S+

alongwith a su�cient set of relations3R, is a graph denoted asΓ(G,S+),
whose vertex set is G, and the edge set E ⊆ G × G is de�ned as E =
{(g, g′) | g ∈ G, g′ = ghi, i ∈ S+}. Notice that the edges of a
Cayely graph are colored, the color of an edge (g, ghi) corresponding to
the generator hi ∈ S+ (see �g. 1). Moreover, the Cayley graph is iden-
ti�ed by the neighbourhood structure and by any su�cient set of closed
paths representing the elements ofR.

We now want to use the graph representing causal relations of an
update rule to de�ne rigorously the notion of locality. In order to make
this principle independent of homogeneity, we consider a graph that has
no further structure, in particular it needs not be a Cayley graph. The
notion of distance that we de�ned above coincides with the de�nition of
distance on the graph. Let p := (a1, a2, . . . , an) be a path in A i.e. a
collection of vertices such that either (ai, ai+1) ∈ E or (ai+1, ai) ∈ E,
and a1 = a, an = b. The set of all these paths is γ(a, b). Then the
distance of a and b on the graph will be de�ned as

d(a, b) := min
γ(a,b)

l(p). (1)

With the above de�nition of distance, it is tautological that the up-
date rule is local, providedwe adopt a naive notion of locality, i.e. the evo-
lution is such that changes on a cell a�ect only neighbouring cells in a sin-
gle step. However, we want our notion of locality to be such that exceed-
ingly connected cells are forbidden: the neighbourhood of a cell amust
be of bounded size. More than that, since the memory array is allowed

3A set of relators is a set of group elements of the form hs1
i1
hs2
i2
. . . hsk

ik
, with sk ∈

{+1,−1}, that are set equal to the group unit e. The setR is su�cient if every product
of generators that is equal to e belongs to the conjugate closure ofR.
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to be in�nite, we want the bound to be uniform. This avoids the possi-
bility that every single cell has a �nite number of neighbours, but overall
the neighbourhood size is unbounded. We observe that the last remark
is important only because we want to de�ne locality independently of
homogeneity. Before concluding the discussion of locality, an important
remark is in order. Up to now we only referred to pointwise properties
of the update rule, i.e. properties ruling the behaviour at a given cell or
in a small neighbourhood of cells. This is in line with the usual notion
of a physical law, that is typically formulated as some di�erential equa-
tion holding at each and every single point in space-time, and, as such, it
can be tested with local experiments. In other words, local experiments
are su�cient to gather enough information about physical laws. In our
framework, in order for the latter statement to hold true, locality and ho-
mogeneity are not su�cient. Indeed, in order to specify an update rule
completely, the large scale structure of the graph has to be speci�ed. In
other words, knowledge of the neighbourhood of any point and the rule
that updates itmust be supplemented by the speci�cation of closed paths.
The locality requirement then amounts to require that every closed path
can be decomposed into “elementary” closed paths that have a uniformly
bounded length. For a homogeneous rule, this amounts to say that a su�-
cient setR of relations is �nite, and the length of its elements is bounded.
The latter condition grants us the possibility of testing physical laws on
regions that have a bounded size.

Local update rule: the size of the neighbourhood of every cell is uni-
formly bounded, and closed paths on the graph of the update rule are de-
composable into elementary closed paths of uniformly bounded length.

Now, amemory array with a homogeneous, reversible and local up-
date rule is aCellular Automaton (CA). For amore formal de�nition, the
reader is referred to Ref. [21].

We now want to stress that the metric space de�ned by the Cayley
graph Γ(G,S) with the distance d, besides carrying all the algebraic in-
formation aboutG, carries geometric information. In particular, it iden-
ti�es an equivalence class of metric spaces that contains all the Cayley
graphs ofG, aswell as othermetric spaces including suitable smoothman-
ifolds, where the Cayley graphs ofG can be embedded with a uniformly
bounded distortion of distances. The geometric information about G
captured by such an equivalence class is generally bound to its algebraic
properties. Rigorously speaking, the equivalence relationwe are referring
to is quasi-isometry. Let (M1, d1) and (M2, d2) be twometric spaces. We
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f
say that a map f :M1 →M2 is a quasi-isometry if one can �nd re
stants 1 < a <∞ and 0 < b <∞ such that foror every x, y ∈M
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law represented by the automaton. The theory that deals with quasi-
isometry classes and the connection they allow one to draw between alge-
braic and geometric properties of groups is calledGeometric group theory.
Curiously, this theory seems to �ll the gap lamented by A. Einstein in the
following quote, which is amazing, yet not among the most famous of
his:

But you have correctly grasped the drawback that the continuum
brings. If the molecular view of matter is the correct (appropriate) one, i.e.,
if a part of the universe is to be represented by a finite number of moving
points, then the continuum of the present theory contains too great a mani-
fold of possibilities. I also believe that this too great is responsible for the fact
that our present means of description miscarry with the quantum theory.
The problem seems to me how one can formulate statements about a discon-
tinuumwithout calling upon a continuum (space-time) as an aid; the latter
should be banned from the theory as a supplementary construction not jus-
tified by the essence of the problem, which corresponds to nothing “real”. But
we still lack the mathematical structure unfortunately. How much have I
already plagued myself in this way! [40].

2. Linear Fermionic cellular automata andquantum
walks

A Fermionic CA has a memory array that is made of local Fermionic
modes,whose transformations, states and e�ects canbe expressed in terms
of the Fermionic algebra generated by the local �eld operatorsψs(a)with
their adjoints ψ†

s(a), where a ∈ A and s ∈ Ha is an index that accounts
for the internal structure of the cell a, which is composed by |Sa| local
Fermionicmodes. The algebra is fully characterised by theCanonicalAn-
ticommutation Relations (CAR)

{ψs(a), ψ
†
t (b)} = δabδstI, {ψs(a), ψt(b)} = 0, (4)

where {X, Y } := XY +Y X denotes the anticommutator ofX andY .
For homogeneous rules, the cell structureHa = H is independent

of a. A reversible map A of a Fermionic memory array is de�ned as an
automorphism of the algebra of operators, and it is then fully speci�ed
by the image of �eld operators A [ψs(a)]. In the general case, the latter
is a polynomial in the �eld operators of the neighbourhood of the cell a.
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Normally, wewould require anupdate rule that cannot create excitations,
that is to say, a number-preserving automorphism:

A (N) = N, (5)

whereN :=
∑

a,s ψ
†
s(a)ψs(a). In the followingwewillmake the further

restrictive assumption that the automorphism is linear, i.e.

A [ψs(a)] =
∑

hi∈S

Wss′(hi)ψs′(ah
−1
i ), (6)

whereS := S+∪S−, andS− := S−1. ThematrixW (hi)with elements
Wss′(hi) is called the transition matrix corresponding to the generator
hi ∈ S. Since the automaton is linear, the transition matrix contains all
the information about the dynamics of the system. In Fermionic theory, a
basis of pure states, identi�ed by the stringas = (a1s1, a2s2, . . . , aksk)
can be de�ned by

|as〉 := ψ†
s1
(a1)ψ

†
s2
(a2) . . . ψ

†
sk
(ak)|Ω〉, (7)

where |Ω〉 is the unique common eigenvector of the (commuting) num-
ber operators ψ†

s(a)ψs(a) with null eigenvalues for every a and s. By
some straightforward algebra, one can easily realise that the transitionma-
tricesW ∗(hi) de�ne the evolution of states of a single excitation

|ψ(t)〉 =
∑

a∈A,s∈H

ϕs(a, t)|as〉, (8)

namely

|ψ(t+ 1)〉 =
∑

a∈A,s,s′∈H,hi∈S

W ∗
ss′(hi)ϕs(a, t)|ah−1

i s′〉, (9)

in other words

ϕs(a, t+ 1) =
∑

s′∈H,hi∈S

W ∗
ss′(hi)ϕs(ah

−1
i , t). (10)

The dynamics of single excitations thus determines the full dynamics,
andmultiple excitations evolve independently. Treatingϕs(a, t) as a “sin-
gle particle” wavefunction in H = l2(A) ⊗ C|H|, the space of square
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summable sequences on A × H , for groups having suitable �nite quo-
tients the transition matrices de�ne a unitary operator4 W on H (for
details see Ref. [41]). One can easily verify [25, 42] thatW can be ex-
pressed as

W =
∑

hi∈S

Thi
⊗W (hi), (11)

whereTg is the right-regular representation of the groupA, i.e. Tg|f〉 :=
|fg−1〉, with {|f〉 | f ∈ A} the canonical orthonormal basis in l2(A)
and g ∈ A. A unitary operator of the form 11 on l2(A)⊗ C|H| is called
QuantumWalk (QW), because it represents the coherent quantum ver-
sion of a classical random walk.

We remark that not only a linear Fermionic CA can be represented
by a QW, but also every QW corresponds to a linear Fermionic CA. In-
deed, consider a general QWW as in Eq. (11), and de�ne the linear endo-
morphism of the Fermionic algebra on the corresponding Cayley graph

A [ψs(g)] :=
∑

hi∈S

Wss′(hi)ψs′(gh
−1
i ).

Thanks to unitarity ofW , the endomorphismA is actually an automor-
phism, and one can easily show that it corresponds to a Fermionic CA.

3. Isotropy

In this section we discuss a further principle that we impose on our CAs:
isotropy. Once again, while the name of the property is borrowed from
space-time geometry, in order to give it a meaning in a pre-geometric con-
text—wherewe only have amemory array organised as aCayley graph by
virtue of causal connections introduced by a dynamical law—we need to
rethink the notion of isotropy in depth, and abstract its essence avoiding
to appeal to a background geometry. Notice that in the case of isotropy
avoiding every geometrical notion is impossible, but we will strictly re-
fer to those introduced by homogeneity, i.e. the Cayley graph represent-
ing causal connections of memory cells and its properties. The notion

4In the general case, preservation of the Fermionic algebra easily allows one to prove
that W † is an isometry, however the proof of unitarity can be carried out for CAs on
Cayley graphs of groups satisfying the wrapping lemma (see Refs. [15, 21]).
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of isotropy, in space-time, requires every direction to be equivalent. The
translation fo this principle in our context leads to the requirement that,
given theCayley graphΓ(A, S), every generator inS+ is equivalent. This
means that, if we permute the labels of elements inS+ according to some
transitive permutation group, we will observe a physical law that is equiv-
alent to the original one. Equivalence of the two physical laws is intended,
as in the case of reversibility, through one and the same operationally re-
versible transformation acting independently on every cell.

Let us now spell out isotropy in rigorous terms. Let L be a group
of automorphisms of the Cayley graphΓ(A, S) (i.e. permutations of the
vertices that map edges to edges) that can be expressed as a permutation
λ of S. This means that, if l ∈ L, for every a = hs1i1 h

s2
i2
. . . hskik ∈

A one has l(a) = λ(hs1i1 )λ(h
s2
i2
) . . . λ(hskik ). It is easy to verify that a

Cayley graph isomorphism that can be expressed as a permutation is also
a group automorphism of A. We say that a quantum walk on Γ(A, S)
is L-isotropic if there exists a projective unitary faithful representation
U : L→ U(C|H|) such that

Wl(hi) = UlWhi
U−1
l , (12)

for l ∈ L andWl(hi) 6=Whi
, with the groupL acting transitively onS+.

This notion allows us to formulate a new principle, whichwe call isotropy
(see ref. [42]).

Isotropic update rule. AQuantumWalk is isotropic if it isL-isotropic
for some group L of automorphisms of the Cayley graph Γ(A, S) that
can be expressed as a permutation λ of S.

In the remainder, in addition to the homogeneity, reversibility and
locality requirements, we will restrict to CAs that are linear and whose
QW is isotropic.

4. QuantumWalks on Cayley graphs ofZd

We will now restrict attention to Cayley graphs of Zd. Up to now our
approach was fully deductive, i.e. we analysed the simple consequences
of our requirements on the update rule for our memory array. This, in
fact, is the spirit of our approach. However, in this section we will rea-
son in an opposite way. We start from simplest non-trivial cell structure
(|H| = 2) and from the group (i.e.Z), and ask ourselves what of its Cay-
ley graphs can support an isotropic linear Fermionic CA. Notice that the
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simplest cell structure corresponds to |H| = 2, because forCayley graphs
of Abelian groups one can prove [43] that for |H| = 1 one has only the
trivial QW. Before restricting to the interesting physical case of d = 3, we
discuss general properties of QWs on Cayley graphs of Abelian groups
that allow us to simplify the analysis of the unitarity constraints and to
make the problem of diagonalisation much simpler.

Indeed, the right-regular representation of Abelian groups is
Abelian, and this implies that the operators Tg can be simultaneously
diagonalised in the improper basis |k〉. The distributions |k〉 are easily
computed after we introduce the basis h̃j de�ned as follows. First, we
choose in Zd a canonical basis, and express every hi ∈ S as a vector hi.
We then de�ne the sets Dn := {hi1 , . . . , hid}, that are all the possible
subsets of S complete and linearly independent. Now, for everyDn we
construct the dual set D̃n := {h̃(n)

1 , . . . , h̃
(n)

d }, such that for hi ∈ Dn

one has h̃
(n)

j · hik = δjk. Now, let D̃ :=
⋃

n D̃n, and �nally we can
express the so-called (�rst) Brillouin zone as

B :=
⋂

h∈D̃

{k ∈ Zd | −π ≤ h̃ · k ≤ π} (13)

Now, the common (improper) eigenvectors of the right regular represen-
tation are

|k〉 := 1

|B|
∑

x∈A

e−ik·x|x〉, (14)

where we adopted the vector notationx for x ∈ A, meaning that if x =∏
i h

si
i , then x =

∑
i sihi, and where |B| is the Borel measure ofB in

Zd. It is easy to verify that

Tx|k〉 = e−ik·x|k〉. (15)

A QW of the form (11) on a Cayley graph of Zd can be decomposed in
the representations W̃ (k) supported on |k〉 ⊗ C|H|, as follows

W̃ (k) =
∑

hi∈S

e−ik·hiW (hi). (16)

One can easily prove that W̃ (k) is unitary for every k ∈ B, and
this makes it easier diagonalisingW , as well as studying its properties.
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h1
h2

h3
h4

Fig. 2 − The elementary cell of the BCC lattice. The generators h1, h2, h3, h4 are
higlighted.

5. Solutionsoftheunitarityconditions inthethree
dimensional case

The condition of reversibility in the linear Fermionic case requires unitar-
ity of the walk operatorW . In terms of the transition matrices one can
express the unitarity conditions as follows

∑

hi∈S

W †(hi)W (hi) =
∑

hi∈S

W (hi)W
†(hi) = I|H|,

∑

hi−hj=h′

W †(hi)W (hj) =
∑

hi−hj=h′′

W (hj)W
†(hi) = 0

This system of second degree equations has no easy solution. Exploiting
isotropy, one can make the above system much easier to solve. In the fol-
lowing, we will consider the three-dimensional case d = 3. Isotropy, in
the �rst place, selects a unique possible Cayley graph for a QW on Z3,
i.e. the one represented in R3 by the Body-Centered Cubic (BCC) lat-
tice, with four generators h1 + h2 + h3 + h4 = 0 (see Fig. 2). Secon-
darily, one can prove that the isotropic solutions of the above equations
only four, modulo local unitary equivalence, i.e.modulo changes of basis
in the Hilbert space C|H| of the internal degrees of freedom. The solu-
tions are the following, given in terms of the matrices W̃ (k) = W±

k and
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W̃ (k) = Z±
k :

W±
k = d±k I − in±

k · σ±, Z±
k = [W±

k ]T ,

n±
k =

(
sxcycz ∓ cxsysz
cxsycz ± sxcysz
cxcysz ∓ sxsycz

)
, d±k = cxcycz ± sxsysz,

si := sin ki, ci := cos ki, i = x, y, z,

(17)

whereXT denotes the transpose ofX , σ+ = (σx, σy, σz) are the Pauli
operators, and σ− = (σx,−σy, σz) are their transposes. The above
walks are called Weyl quantum walks, because in a suitable regime their
action can be approximated by theWeyl equations.

The spectrum of theWeyl walks is now very easily calculated to be

Spec(W±
k ) = Spec(Z±

k ) = {e−iω±
k , eiω

±
k },

ω±
k = arccos d±k .

(18)

The Brillouin zone is de�ned by the following equations

B =
⋂

i,j∈{x,y,z}
s=±1

{−π ≤ ki + skj ≤ π} (19)

and it is represented in Fig. 3. The functionω+ : B → [0, π) de�ned by
ω+ : k 7→ ω+

k is the dispersion relation of the QW, and along with the
wave vectork and thehelicity vectorn±

k contains all the information about
its kinematics. In particular, a wave-packet with wave-vector distribution
peaked aroundk propagates with a group velocity given by v±

k = ∇ω±
k .

The transition matrices for the Weyl walks are

Ah1 =

(
ζ± 0
ζ± 0

)
, A−h1 =

(
0 −ζ∓
0 ζ∓

)
, (20)

Ah2 =

(
0 ζ±

0 ζ±

)
, A−h2 =

(
ζ∓ 0
−ζ∓ 0

)
, (21)

Ah3 =

(
0 −ζ±
0 ζ±

)
, A−h3 =

(
ζ∓ 0
ζ∓ 0

)
, (22)

Ah4 =

(
ζ± 0
−ζ± 0

)
, A−h4 =

(
0 ζ∓

0 ζ∓

)
, (23)
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Fig. 3− The Brillouin zone for theWeyl walks in Eq. (17).

where ζ± = 1±i
4
. It is now easy to check that the isotropy group is the

Heisenberg group Z2 × Z2 and its projective unitary representation on
C2 is {I, iσx, iσy, iσz}.

The corresponding Fermionic CA are called Weyl automata, and
we will denote them by the symbolW ±.

6. Small wave-vector regime

As we mentioned earlier, the name “Weyl” quantum walk, or “Weyl” au-
tomaton is justi�ed by the behaviour of the solutions of the walk dynam-
ics in a suitable approximation, that we deem small wave-vector regime.
This regime is de�ned by the condition that the state of the memory ar-
ray is given by a vector |ψ〉 ∈ l2(A)⊗C2 that is a superposition of plane
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waves |k〉with amplitudes narrowly peaked around a value k0, i.e.

|ψ〉 =
∑

j∈{±}

∫

B

d3kψj(k)|k〉|ujk〉, (24)

whereWk|ujk〉 = eijω
±
k |ujk〉, and

|ψj(k)| < ε, ∀j, ∀k : |k − k0| ≥ δ, (25)

for some |k0| � π. Notice that we did not specify the sign± in the ex-
pressionsWk and |ujk〉, for the sake of a lighter notation. Whatwe discuss
in the following, indeed, holds independently of the special QW, unless
otherwise speci�ed. The symbolWk can thus denoteW±

k and Z±
k . In

order to analyse the evolution in such regime, let us introduce the inter-
polating HamiltonianHI(k), de�ned by

Wk = exp{−iHI(k)}. (26)

If we embed the discrete lattice (x, t) quasi-isometrically in R4, and ex-
tend the domain of all functions of k from B to the whole R3, the op-
eratorHI(k) de�nes a Hamiltonian for a continuous-time evolution on
L2(R3)⊗ C2, given by

U(t) =

∫

R3

d3k|k〉〈k| ⊗ exp{−iHI(k)t}.

The term “interpolating Hamiltonian” refers to the fact that, if we apply
U(t) to the extension of a wave packetψ(k) = (ψ+(k), ψ−(k)), the so-
lution ψ(k, t) = (ψ+(k, t), ψ−(k, t)) satis�es Schrödinger’s equation

i∂tψ(k, t) = HI(k)ψ(k, t). (27)

Now, let us consider the Weyl automatonW±
k . For a small wave-vector

packet, to �rst order in |k| one hasHI(k) = k · σ, and the di�erential
equation becomes (modulo a unitary transformation in the case ofW−

k )

i∂tψ(k, t) = ±k · σψ(k, t). (28)

Now, the inverse Fourier transform of the latter are Weyl’s equations

i∂tψ(x, t) = ±σ ·∇ψ(x, t). (29)



QUANTUM FIELD THEORY FROM FIRST PRINCIPLES 97

7. Reversibility and the Dirac automaton

Up to now we did only impose the unitarity condition, which is neces-
sary for our strengthened notion of reversibility, but not su�cient. We
observe that actually theWeyl quantumwalks are not equivalent to their
inverses through a local transformation acting identically and indepen-
dently on every cell. Indeed, such a transformation can only rotate the
vectorn±

k by a �xed rotation, independent ofk, and this is not su�cient
to turn n±

k into −n±
k for every k. However, the construction that we

presented in the discussion about reversibility will produce a reversible
automaton that locally behaves as a Weyl automaton: it is su�cient to
double every cell, thus having |H| = 4, and taking the automaton corre-
sponding to the walk operator

A± :=W± ⊗ (W±)†. (30)

In the small wavevector regime, the aboveQWbehaves as amasslessDirac
�eld. Notice that one can take one further step, and introduce the family
of Dirac automata, de�ned by the walk operators

D± :=

(
nW± imI
imI n(W±)†

)
, (31)

where n2 +m2 = 1. The parameterm parametrises the elements of this
family ofQWs, each of which has a small-wavelength behaviour governed
by the following di�erential equation

i∂tψ(x, t) = (±inα ·∇−mβ)ψ(x, t),

where one can expressα = γ0γ, and b = γ0 in terms of the Dirac ma-
trices γµ representing the Cli�ord algebra for SU(1, 3), i.e. {γµ, γν} =
2ηµν . Form � n, one can take a further approximation, truncating to
�rst order inm, and rewriteα and β, thus obtaining Dirac’s equation

(iγµ∂µ −mI)ψ(x, t) = 0. (32)

We remark that the Dirac QWs correspond to the Dirac CAs which acts
on the same Cayley graph as the Weyl’s, with every cell doubled in two
modes labelled u and d. The Dirac CA can be obtained as

D± = [W ± ⊗ I ]S̃m[(W
±)−1 ⊗ I ]S , (33)
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where

S̃m :=
∏

g∈A

S̃m(g),

and S̃m(g) := ZmgSg, Sg denoting the swap operators acting on the
cell g, i.e.Sg[ψ

u
s (g)] = ψd

s (g),Sg[ψ
d
s (g)] = ψu

s (g), while

Zmg[ψ
u
s (g)] = mψu

s (g) + inψd(g),

Zmg[ψ
d
s (g)] = mψd

s (g) + inψu(g).

Let us now de�ne

S ±
m

′
(g) := [W ± ⊗ I ]S̃m[(W

±)−1 ⊗ I ].

SinceW ±⊗I is a local automorphismof the Fermionic algebra, one has
that i)S ±

m
′
(g) acts on the neighbourhood of g of the umodes, and on g

of thedmodes; ii) since [S̃m(g), S̃m(g
′)] = 0, also [S ±

m
′
(g),S ±

m
′
(g′)] =

0. This implies thatD± can be decomposed as

D± =
∏

g∈A

S ±
m

′
(g)

∏

g′∈A

Sg′ .

Upon de�ning N±
g the neighbourhood of g in the Cayley graph of the

CA, one can then �nd a subsetH ⊆ A such that N±
h1

∩ N±
h2

= ∅ for
h1 6= h2 ∈ H , and such that �nitely many—say k—translationsHg−1

i
ofH cover the wholeA. In this way one can easily obtain that

D± =
k∏

i=1


 ∏

h∈Hg−1
i

S ±
m

′
(h)


∏

g∈A

Sg.

Thismeans that theCAsD± admit a decomposition intok layers of local,
non overlapping unitary gates acting locally on the neighbourhoods of a
cell, i.e. they admit a so-calledMargolus decomposition [15].
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8. Theory of light

Weshowed that ourCAs reproduce in the smallwavelength regimeWeyl’s
and Dirac’s equations. We now discuss how one can reconstruct also
Maxwell’s equations from the massless Dirac CA, following Ref. [29].
The idea is to study particular entangled states where the correlations are
�nely tuned. The second-quantisation analysis is easier than theQWone,
thus, we start introducing some notation. First, we denote by ϕs(x, t)
the �eld operators for the “up” component of the x cell at step t, and
ψs(x, t) those for the “down” one. Correspondingly, we will denote by
ϕs(k, t) and ψs(k, t) the �eld operators for the normal modes k, i.e.

ϕs(k, t) = 1/|B|1/2
∑

x∈A

e−ik·xϕs(x, t),

and
ψs(k, t) = 1/|B|1/2

∑

x∈A

e−ik·xψs(x, t).

Now, we de�ne the following bilinear operators

F T (k, t) := F (k, t)−
nk

2

|nk
2
|

[
nk

2

|nk
2
|
· F (k, t)

]

F i(k, t) :=
∑

ss′

∫

B′
d3qfk(q)ϕs(k/2− q, t)σi

ss′ψs′(k/2 + q, t),

E(k, t) := |nk
2
|{F T (k, t) + F †

T (k, t)},

B(k, y) := i|nk
2
|{F T (k, t)− F †

T (k, t)},

whereB′ is a suitable domain corresponding to theBrillouin zone rescaled
by a factor 1/2. One can then verify (see Ref. [29]) that the operatorsE
andB approximately satisfy Maxwell’s equations in the form

∂tE(k, t) = i2nk
2
×B(k, t), (34)

∂tB(k, t) = −i2nk
2
×E(k, t), (35)

2nk
2
·E(k, t) = 0, (36)

2nk
2
·B(k, t) = 0. (37)
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Moreover, despite the Fermionic nature of the �elds that de�ne the op-
eratorF (k, t), one can prove that, upon suitable choice of the function
fk(q), its transverse components

γi(k) := ui
k · F (k, t0), i = 1, 2

ui
k · nk

2
= u1

k · u2
k = 0, |ui

k| = 1, (u1
k × u2

k) · nk
2
> 0,

approximately satisfy the canonical commutation relations

[γi(k), γj(k′)] = δijδB(k − k′). (38)

9. Special relativity and space-time symmetries

The question thatwe discuss in the present section regards the emergence
of space-time. Wealready stressed that thequasi-isometry class of theCay-
ley graph induced by a CA identi�es in a family of manifolds, where the
evolution rule can be described in terms of interpolating dynamics. The
di�erential equations thatwe found, such asWeyl’s, Dirac’s orMaxwell’s,
have a common feature: covariance under the Poincaré group. The sym-
metry group of space-time in this case is not previously �xed, but is the
result of various approximations. The nature of the emergent space-time
is intrinsically connectedwith the symmetries of physical laws represented
byCAs. However, for the timebeing,wedonothave anoperational inter-
pretation for the symmetry group. This can bemade clearer if we observe
that we do not have an acceptable notion of a boost or a rotation con-
necting observers in two di�erent reference frames. Indeed, the Cayley
graph is a graphical representation of causal connections between events,
and the CA represents a physical law. What does it mean to “move” with
respect to a causal connection or with respect to a physical law? The de-
tailed treatment of this question can be found in Refs. [31, 32, 34]

To make the role of symmetries consistent we start observing that
a CA represents a physical law as described by an observer. Now, every
“inertial” observer will describe the evolution of physical systems using
the same rule. Symmetries are thus required only to map the state of sys-
tems as seen by one observer to the state of the same systems as seen by a
di�erent observer. Now, the conceivable transformations are once again
dictated by ourCA.Thequestion is then: howdoes aCAenforce a group
of transformations that can be interpreted as a change of reference frame?
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Here comes into play the relativity principle. IN its original formu-
lation, due to Galileo, the principle states that every inertial observer de-
scribes physical laws in the sameway. Thus, themaps representing changes
of reference frame are those that leave the CA invariant. How does this
simple rule allow us to reconstruct the symmetry group? We proceed in
the following way. First of all, our Fermionic CAs are completely de-
scribed by QWs. Then, the relativity principle in our case will impose
that changes of inertial frame must preserve the QW of interest.

Now, a QW is a unitary operator, and as such it is completely spec-
i�ed by its eigenvalues and corresponding eigenvectors. Moreover, an
eigenvector of a QW represents a stationary physical condition, and ev-
ery observer has to agree on stationarity. Thus, eigenspaces of the QW
must bemapped to eigenspaces by a change of inertial frame. Similarly, if
two observers change the labelling of the Cayley graph in the same way,
shifting the “origin” labelled by the neutral element e to the node for-
merly labelled g, then the change of inertial frame between themmust be
independent of g. Let us analyse the consequences of this requirement in
detail. If the origin is shifted from e to g, then a node formerly labelled f
would now be labelled gf . Thus, the left-regular representation changes
accordingly: Tx 7→ Ty+x = TyTx. This implies that a state that is sta-
tionary under Ty for one of the two observers must be stationary also for
the other. This implies that the vectors |k〉 must be mapped to vectors
|k′〉. In other words, a change of inertial frame must be given by a map
k′ : B → B that maps k 7→ k′(k), so that the eigenvalue equation for
the QWWk of interest retains the same solutions

Wk|ψ(k)〉 = e−iω|ψ(k)〉. (39)

In order to study the mapsk′ allowed, we �rst observe that, using unitar-
ity ofWk, the eigenvalue equation can be rewritten as

(Wk ±W †
k)|ψ(k)〉 = (e−iω ± eiω)|ψ(k)〉, (40)

namely
{
(dk − cosω)|ψ(k)〉 = 0,

(nk · σ − sinωI)|ψ(k)〉 = 0.
(41)

Since unitarity imposes that dk = 1 − |nk|2, and the second equation
requires that sinω = |nk|, the �rst equation in the system is redundant.
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Let us then focus on the second one, and write it as

nµ(k)σ
µ|ψ(k)〉 = 0, (42)

nµ(k) := (sinω,nk), σµ = (I,σ).

The form of Eq. (42) clearly recalls a Lorentz-invariant expression. How-
ever, suppose that a Lorentz transform is applied to the vector nµ(k):
in general the obtained four- vector is not in the range of the map n :
B× [0, 2π) → B1(0)× [−1, 1] ⊆ R4. This problem can be easily over-
come multiplying Eq. (42) by a non-vanishing function f(k) such that
themapk 7→ f(k)n(k)has the same invertibility domains ask 7→ n(k).
De�ning pµ(k) := f(k)nµ(k), we then have the following expression
for the eigenvalue equation

pµ(k)σ
µ|ψ(k)〉 = 0 (43)

Now, given a map k′ : B → B we can write

pµ(k
′)σµ = eia(k)Γ̃kpµ(k)σ

µΓk, (44)

for suitable invertiblematrices Γ̃k andΓk and aC∞mapa : B×[0, 2π) →
R. Clearly themapsk 7→ k′ and |ψ(k)〉 7→ Γ−1

k |ψ(k)〉preserveEq. (42).
However, this scenario would leave room to an exceedingly wide range of
possible changes of inertial frame, and thus we impose that the maps Γ̃k

and Γk do not actually depend on k, i.e.we require

pµ(k
′)σµ = Γ̃pµ(k)σ

µΓ. (45)

One can then prove that the allowed maps k′ form then a realisation of
the semidirect product of the Poincaré group and a group of invertible
radial di�eomorphisms of the Brillouin zone.

The existence of suitable functions f that allow one to de�ne pfµ(k)
is proved in Ref. [32]. Notice that we made the dependence of the func-
tionpfµ on f explicit, because in principle theremight existmore than one
function f (actually, there are continuously many). On the other hand,
one can�nd the detailed derivation of the full group inRef. [33]. InFig. 4
we show some orbits of vectors k under the subgroups of rotations, rota-
tions around a �xed axis, and boosts.

In Ref. [34] the symmetries of the massive (Dirac) QWs in 1 + 1-
d are studied in the same approach, and it is shown that in that case the
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frefchanges of inertial ferencerence frame formorm a group that is a semidirect prod-
uct as above, but involving the linear group SO(1, 2), i.e. recombining
the mass parameter with the components of k.

All the realisations of the forementioneorementioned symmetry groups pro-
videnon-linear �eeomorphismsof theBrillouin zone. As a consequence,
there is no dual formationormation on space-time coordintes, but rather a dif-
ferenterent formationormation foror every value of k. This phenomenon is known
in the �eld of doubly special y,, an approach to quantum avityvity
based on the relaxation of the usual Lorentz symmetry that allows one a
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space-time symmetry group that preserves, besides the speed ofg light c,
also a length (or equivalently an energy), that could be the Planck length
lP . Its most counterintuitive consequence of this kind of deformations
leads to the phenomenon deemed relative locality: the space-time trans-
formations describing the same change of inertial frame are di�erent for
systems in di�erent regimes of the energy spectrum. As a result, events
that coincide in one reference frame might not coincide in another one.
Such a possibility was studied for the Weyl QW in 1+1-d in Ref. [31].

10. Conclusions

The success of the program that we discussed so far is very promising. We
recovered thedynamics of free relativistic quantum�elds and thePoincaré
symmetry of space-time. To this end, a remark is in order: the dimen-
sion 3+1 is not derived, but assumed from the beginning. The future
developments of the present approach require the construction of inter-
acting theories from suitable principles, and an approximation toolkit in
order to perform calculations for the sake of comparison with the stan-
dard model, along with prediction of possible deviations. In this respect,
a quantum version of the gauge principle seems very appropriate in the
context of our approachwhere time is treated as a discrete variable. In this
case, indeed, there is no way to compare the “canonical basis” of the local
Hilbert space at any site at step t with that at step t + 1, and this implies
that freedommust be allowed in the de�nition of such basis at every step,
in a way that must not break homogeneity, nor create “particles” out of
nothing. This requirement leads in 1+1-d to an essentially unique family
of non-linear interactions thatwere studied inRef. [35], where themodel
was analytically diagonalised in the two-fermion sector.

The study of symmetries in the presence of interactions is of crucial
importance in view of the challenge of recovering a space-time geometry
that depends on the state of the �elds, in the perspective of reconciling a
dynamic geometry with the quantum nature of elementary systems. The
latter problem clearly exhibits very hard challenges, and tackling simpli-
�ed versions of it, like those reported in Section 9, allows us to �ll the gaps
in our present understanding.
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