GRAPHENE AS A QUANTUM PLAYGROUND


Published: luglio 31, 2018
Abstract Views: 752
PDF: 521
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Autori

The modern triathlon “heat-electricity-mechanics†has an indisputable champion, graphene, as a recordman, among all materials in normal conditions, in all three specialties: thermal conductivity, electrical mobility and mechanical strength. On the other hand graphene, being perfectly planar, is the simplest of all possible sp2 pure carbon structures. The graphene family includes curved forms like fullerenes, having gaussian curvature G >0, nanotubes, with G=0 like graphene, and schwarzites with G <0 and vanishing mean curvature. The conjugation of carbon-carbon sp2 bonds makes several global electronic and vibrational properties of graphenes to primarily depend upon the structure topology. Global properties which can be estimated on topological grounds are the growth process, the isomer hierarchy, the vibrational spectrum, the elastic constants, the porosity as a function of the deposition energy, etc. The dynamics of free electrons in graphene is well described by the Dirac quantum-relativistic equation, and some of its consequences like the Zitterbewegung and Klein’s paradox have been proved in graphene. Thus graphene allows for the simulation and validation of fundamental theories in fields hardy accessible to experiments like high-energy physics and cosmology. With some surprising prediction! It is a fact that since the late XIX century topology has become a reference paradigm in many branches of fundamental physics, from Hermann Weyl’s topological theory of electricity and cosmological wormholes, to string theory and present topological field theories in high-energy physics.

Benedek, G. (2018). GRAPHENE AS A QUANTUM PLAYGROUND. Istituto Lombardo - Accademia Di Scienze E Lettere • Incontri Di Studio. https://doi.org/10.4081/incontri.2018.379

Downloads

Downloads

I dati di download non sono ancora disponibili.

Citations