NORMAL FORM AND ENERGY CONSERVATION OF HIGH FREQUENCY SUBSYSTEMS WITHOUT NONRESONANCE CONDITIONS

Autori

  • Dario Bambusi Dipartimento di Matematica, Università degli studi di Milano, Milano
  • Antonio Giorgilli Dipartimento di Matematica, Università degli studi di Milano, Milano
  • Simone Paleari Dipartimento di Matematica, Università degli studi di Milano, Milano
  • Tiziano Penati Dipartimento di Matematica, Università degli studi di Milano, Milano

DOI:

https://doi.org/10.4081/scie.2013.172

Abstract

We consider a system in which some high frequency harmonic oscillators are coupled with a slow system. We prove that up to very long times the energy of the high frequency system changes only by a small amount. The result we obtain is completely independent of the resonance relations among the frequencies of the fast system. More in detail, denote by ϵ−1 the smallest high frequency. In the first part of the paper we apply the main result of [1] to prove almost conservation of the energy of the high frequency system over times exponentially long with ϵ−1/n (n being the number of fast oscillators). In the second part of the paper we give a new self-contained proof of a similar result which however is valid only over times of order ϵ−N with an arbitrary N. Such a second result is very similar to the main result of the paper [4], which actually was the paper which stimulated our work.

Downloads

I dati di download non sono ancora disponibili.

##submission.downloads##

Pubblicato

2013-12-30

Come citare

Bambusi, D., Giorgilli, A., Paleari, S., & Penati, T. (2013). NORMAL FORM AND ENERGY CONSERVATION OF HIGH FREQUENCY SUBSYSTEMS WITHOUT NONRESONANCE CONDITIONS. Istituto Lombardo - Accademia Di Scienze E Lettere - Rendiconti Di Scienze, 147. https://doi.org/10.4081/scie.2013.172