REGULARITY OF THE SOLUTION TO A NONSTANDARD SYSTEM OF PHASE FIELD EQUATIONS

Autori

  • Pierluigi Colli Dipartimento di Matematica "F. Casorati", Università di Pavia, Pavia
  • Gianni Gilardi Dipartimento di Matematica "F. Casorati", Università di Pavia, Pavia
  • Jürgen Sprekels Weierstraß-Institut für Angewandte Analysis und Stochastik, Berlin

DOI:

https://doi.org/10.4081/scie.2013.180

Abstract

A nonstandard system of differential equations describing two-species phase segregation is considered. This system naturally arises in the asymptotic analysis recently done by Colli, Gilardi, Krejčí, and Sprekels as the diffusion coefficient in the equation governing the evolution of the order parameter tends to zero. In particular, a well-posedness result is proved for the limit system. This paper deals with the above limit problem in a less general but still very significant framework and provides a very simple proof of further regularity for the solution. As a byproduct, a simple uniqueness proof is given as well.

Downloads

I dati di download non sono ancora disponibili.

##submission.downloads##

Pubblicato

2013-12-30

Come citare

Colli, P., Gilardi, G., & Sprekels, J. (2013). REGULARITY OF THE SOLUTION TO A NONSTANDARD SYSTEM OF PHASE FIELD EQUATIONS. Istituto Lombardo - Accademia Di Scienze E Lettere - Rendiconti Di Scienze, 147. https://doi.org/10.4081/scie.2013.180